

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4751

Introduction to Advanced Mathematics (C1)

Wednesday

12 JANUARY 2005

Afternoon

1 hour 30 minutes

Additional materials:

Answer booklet Graph paper MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72.

WARNING

You are not allowed to use a calculator in this paper

Section A (36 marks)

1 Solve the inequality 2(x-3) < 6x + 15. [3] Make r the subject of $V = \frac{4}{3}\pi r^3$. 2 [3] 3 In each case, choose one of the statements $P \Rightarrow O$ $P \Leftarrow 0$ P ⇔ 0 to describe the complete relationship between P and Q. (i) For n an integer: n is an even number n is a multiple of 4 [1] (ii) For triangle ABC: P: B is a right-angle $AB^2 + BC^2 = AC^2$ [1] Find the coefficient of x^3 in the expansion of $(2 + 3x)^5$. 4 [4] 5 Find the value of the following. (i) $\left(\frac{1}{3}\right)^{-2}$ [2] (ii) $16^{\frac{3}{4}}$ [2] The line L is parallel to y = -2x + 1 and passes through the point (5, 2). 6 Find the coordinates of the points of intersection of L with the axes. [5] Express $x^2 - 6x$ in the form $(x - a)^2 - b$. 7 Sketch the graph of $y = x^2 - 6x$, giving the coordinates of its minimum point and the intersections with the axes. [5] 8 Find, in the form y = mx + c, the equation of the line passing through A (3, 7) and B (5, -1). Show that the midpoint of AB lies on the line x + 2y = 10. [5] Simplify $(3 + \sqrt{2})(3 - \sqrt{2})$. 9

[5]

Express $\frac{1+\sqrt{2}}{3-\sqrt{2}}$ in the form $a+b\sqrt{2}$, where a and b are rational.

10

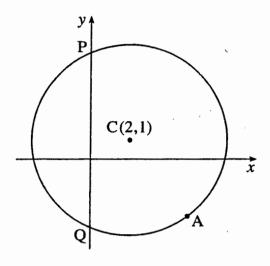


Fig. 10

Fig. 10 shows a circle with centre C(2, 1) and radius 5.

(i) Show that the equation of the circle may be written as

$$x^2 + y^2 - 4x - 2y - 20 = 0.$$
 [3]

- (ii) Find the coordinates of the points P and Q where the circle cuts the y-axis. Leave your answers in the form $a \pm \sqrt{b}$.
- (iii) Verify that the point A(5,-3) lies on the circle.

Show that the tangent to the circle at A has equation 4y = 3x - 27. [6]

- 11 A cubic polynomial is given by $f(x) = x^3 + x^2 10x + 8$.
 - (i) Show that (x-1) is a factor of f(x).

Factorise f(x) fully.

Sketch the graph of y = f(x). [7]

(ii) The graph of y = f(x) is translated by $\begin{pmatrix} -3 \\ 0 \end{pmatrix}$.

Write down an equation for the resulting graph. You need not simplify your answer.

Find also the intercept on the y-axis of the resulting graph.

[5]

- 12 (i) Show that the graph of $y = x^2 3x + 11$ is above the x-axis for all values of x. [3]
 - (ii) Find the set of values of x for which the graph of $y = 2x^2 + x 10$ is above the x-axis. [4]
 - (iii) Find algebraically the coordinates of the points of intersection of the graphs of

$$y = x^2 - 3x + 11$$
 and $y = 2x^2 + x - 10$. [5]

Mark Scheme

OCR FINAL MARK SCHEME 4751 MEI PURE MATHS C1 JANUARY 2005

Section A

	ion A	3.51		1
1	2x - 6 < 6x + 15 or -4x < 21	M1	condone ≤ for both Ms	
	-21 < 4x or ft	M1	for inequality with $+$ ve x coefft;	
	x > -21/4 .o.e. (allow 21/–4 or better)	A1	if M0, SC1 for -21/4 found	3
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2	21/	3	2 3V 2	
-	$r = \sqrt[3]{\frac{3V}{4p}}$ o.e.		M2 for $r^3 = \frac{3V}{4p}$ o.e., with r^3 as subject,	
	$\bigvee 4p$			3
			M1 for cube root of their r^3	3
2	() [D] . [O]	1	1 O . P	
3	$(i) [P] \leftarrow [Q]$	1	condone $Q \Rightarrow P$;	
	$(ii) [P] \Leftrightarrow [Q]$	1	in both parts, condone arrows not	_
			implication symbols	2
4	$1080 [x^3]$	4	M1 for each of 2^2	
			and 3^{3} or $(3x)^{3}$,	
			and M1 for 10 or $(5\times4\times3)/(3\times2\times1)$ or for	4
			1 5 10 10 5 1 seen but not for ${}^{5}C_{3}$	'
5	(i) 9	2	M1 for 3^2 or $(3/1)^2$ or $1/(1/3)^2$	
3	(1) 2		WIT 101 3 OI (3/1) OI 1/(1/3)	
	400 0.5			
	(ii) 8 [condone –8 or ±8]	2	M1 for $16^{\frac{1}{4}} = 2$; M0 for $\sqrt[4]{4096}$	
			WIT 101 10 -2, WIO 101 \(\gamma \text{4090}\)	4
6	y = -2x + c	M1	or M1 gradient of $L = -2$	
	$2 = -2 \times 5 + c$ or ft their gradient o.e.	M1	M1 for $x = 0$, $y = 2 - 5 \times -2$	
	c = 12	A1	M1 for $y = 0$, $x = 5 - 2/(-2)$	
	(0, 12) or ft their line	1		
		1	no ft for $y = -2x + 1$ used	
	(6, 0) or ft their line	1	or B5 for both correct answers; condone	5
			not given as coords if clear which axis]
7	a-2,b-0	1 . 1	(2) ² 0 ·	
7	a = 3, b = 9	1+1	or $(x-3)^2 - 9$ seen isw	
		C1		
	sketch of parabola correct way up	G1	correct shape, must extend above x axis	
	min at $(3, -9)$ or ft their $(x - 3)^2 - 9$	G1	may be stated elsewhere; need not be	
			coords.	
	crossing x axis at 0 and 6	G1	may be stated elsewhere	5
			_	
8	y = -4x + 19 cao	3	M1 for $m = (-1-7)/(5-3)$ o.e.	
	, , , , , , , , , , , , , , , , , , , ,	-	and M1 for $y - 7 = \text{their } m(x - 3) \text{ o.e.}$	
	midpoint = (4, 3)	1	and wif for $y - i - \text{then } m (x - 3)$ o.e.	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1		5
	verifying on line $x + 2y = 10$	1]
	FO. 2. 1.7	1		
9	[9-2=]7	1		
	$\frac{1+\sqrt{2}}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$			
	$\left {3-\sqrt{2}} \times {3+\sqrt{2}} \right $	M1		
	- · ·		dep on prev M; M1 if one error [1 out of	
	$3+2+3\sqrt{2}+\sqrt{2}$	M2	5 terms, or 1 out of 3 or 4 terms if	
	$=\frac{3+2+3\sqrt{2}+\sqrt{2}}{7 \text{ or f t}}$ o.e.		collected]	
	7 01 110		_	
	$=\frac{5}{7}+\frac{4}{7}\sqrt{2}$	A1	condone $\frac{5+4\sqrt{2}}{7}$, isw	5
1		171	7 ′	1 2
			/	

Section B

OCR FINAL MARK SCHEME 4751 MEI PURE MATHS C1 JANUARY 2005

		AL MARK SCHEME 4/51 MEI PUR		· · · · · · · · · · · · · · · · · · ·	
10	i	$(x-2)^2 + (y-1)^2 = 5^2$	M2	M1 for one side correct; for backwards	
		$\int x^2 - 4x + 4 + y^2 - 2y + 1 = 25$ or	1	working: M1 for $(x-2)^2 + (y-1)^2$	
		$x^2 - 4x + 4$ and $y^2 - 2y + 1$ seen		seen, A1 correct completing of squares	
				shown; A1 for $(x-2)^2 + (y-1)^2 = 5^2$	
				or M1 for quote of fgc formula, A1 for	2
		2 2 20 0	3.61	correct substn, A1 completion for c	3
	ii	$y^{2} - 2y - 20 = 0$ $y = \frac{2 \pm \sqrt{4 + 80}}{2}$	M1	subst of $x = 0$	
		$2 \pm \sqrt{4+80}$	M1	attempt at use of formula or	
		y = <u>2</u>	A 1	completing square; dep on prev M1	
		$=1\pm\sqrt{21}$	A1	Pythag method: M1 for obtaining $\sqrt{21}$,	3
		-1± V 21		A1 for each y value	3
				SC2 for $x = 2 \pm \sqrt{24}$ or $2\pm 2\sqrt{6}$ from	
	•••		1	use of $y = 0$	
	iii	subst of $(5, -3)$ in eqn for circle	1	or showing $AC = 5$	
		1 CCA 1'CC / 1'CC //	N/I	4y+27 $3x-27$	
		grad. of CA = $y \text{ diff} / x \text{ diff attempt}$	M1 A1	or M1 for $x = \frac{4y + 27}{3}$ or $y = \frac{3x - 27}{4}$	
		=-4/3 o.e.		M1 for subst in eqn for circle	
		grad of tgt = $\frac{3}{4}$ or ft $-\frac{1}{\text{their grad}}$.	M1	M1 expn with at most one error	
		$y + 3 = \frac{3}{4}(x - 5)$ ft their grad	M1	A1 correctly obtaining $x = 5$ or $y = -3$	
		$4y + 12 = 3x - 15$ or $y = \frac{3}{4}x - \frac{27}{4}$	1	as only root	
		o.e. NB ans $4y = 3x - 27$ given		A1 double root so tgt	6
11	i	f(1) attempted	M1	or M1 long divn as far as $x^2 + kx$ or (x)	
		-(-) - F		$(-1)(x^2 + bx - 8)$	
		1+1-10+8=0	A1	A2 for $x^2 + 2x - 8$ oe	
		one of $(x + 4)$ and $(x - 2)$ found	B1	B2 for $(x + 4)(x - 2)$	
		the other	B2	[mixed methods: mark one or other to	
		[if B0 then M1 for roots –4 and 2]		adv. of cand.]	
		sketch of cubic the correct way up	G1	,	
		all ints with axes marked,	G1	correct or ft from their factors	7
	ii	$(x+3)^3 + (x+3)^2 - 10(x+3) + 8$	3	M2 for $y = f(x + 3)$ or attempt to subst	
		or $(x+7)(x+2)(x+1)$ oe		(x+3) or intercepts -7 , -2 , -1 or M1	
		$\log x^3 + 10x^2 + 23x + 14$		for $y = f(x - 3)$ or subst $(x - 3)$ or	
				intercepts –1, 4, 5	
		14, or ft from their eqn if M1 or	2	M1 for subst $x = 0$ in their eqn	
		more earned; [20 from $f(x - 3)$]			5
12	i	use of $b^2 - 4ac$ [may be in quad.	M1	$\underline{\text{or}}$ M1 for $(x - 3/2)^2 + k$ and M1 for k	
		formula]		$= 11 - (\text{their } 3/2)^2 \text{ [or M1 for } y' = 2x - $	
		=9 – 44 oe	A1	3 and M1 use of $y' = 0$] and A1 for	
		[negative] so no [real] roots	A1	$\min y = 35/4$ or showing min is +ve	3
		[condone not showing a pos. value]		53.50 6 6 6	
	ii	(2x+5)(x-2) [>0]	M1	[M0 for formula]	
		2 and -2.5 oe identified	A1	or B2	
		sketch of parabola	M1	or algebraic argument	4
		x > 2 or x < -2.5	A1	or B2; both needed; B1 if '=' included	4
	iii	$x^2 - 3x + 11 = 2x^2 + x - 10$	M1	or subtraction to eliminate y	
		$[0 =] x^2 + 4x - 21$	M1	rearrange to 0; condone one error	
		[0=](x+7)(x-3)	M1	attempt to factorise or use formula	_
		x = 3 or -7;	A1	or A1 for (3, 11) and A1 for (-7, 81);	5
		y = 11 or 81	A1	M0 A0 for trial and imp.	

Examiner's Report